Yes, seasoned scientists do extraordinary science.

science

science / science 594 Views comments

Imagine that you earned tenure and your field’s acclaim decades ago. Perhaps you received a Nobel Prize. Perhaps you’re directing an institute for science that you helped invent. Do you still do science? Does mentoring youngsters, advising the government, raising funds, disentangling logistics, presenting keynote addresses at conferences, chairing committees, and hosting visitors dominate the time you dedicate to science? Or do you dabble, attend seminars, and read, following progress without spearheading it?

People have asked whether my colleagues do science when weighed down with laurels. The end of August illustrates my answer.

At the end of August, I participated in the eighth Conference on Quantum Information and Quantum Control (CQIQC) at Toronto’s Fields Institute. CQIQC bestows laurels called “the John Stewart Bell Prize” on quantum-information scientists. John Stewart Bell revolutionized our understanding of entanglement, strong correlations that quantum particles can share and that power quantum computing. Aephraim Steinberg, vice-chair of the selection committee, bestowed this year’s award. The award, he emphasized, recognizes achievements accrued during the past six years. This year’s co-winners have been leading quantum information theory for decades. But the past six years earned the winners their prize.

Fields

Peter Zoller co-helms IQOQI in Innsbruck. (You can probably guess what the acronym stands for. Hint: The name contains “Quantum” and “Institute.”) Ignacio Cirac is a director of the Max Planck Institute of Quantum Optics near Munich. Both winners presented recent work about quantum many-body physics at the conference. You can watch videos of their talks here.

Peter discussed how a lab in Austria and a lab across the world can check whether they’ve prepared the same quantum state. One lab might have trapped ions, while the other has ultracold atoms. The experimentalists might not know which states they’ve prepared, and the experimentalists might have prepared the states at different times. Create multiple copies of the states, Peter recommended, measure the copies randomly, and play mathematical tricks to calculate correlations.

Ignacio expounded upon how to simulate particle physics on a quantum computer formed from ultracold atoms trapped by lasers. For expert readers: Simulate matter fields with fermionic atoms and gauge fields with bosonic atoms. Give the optical lattice the field theory’s symmetries. Translate the field theory’s Lagrangian into Hamiltonian language using Kogut and Susskind’s prescription. 

Laurels 1

Even before August, I’d collected an arsenal of seasoned scientists who continue to revolutionize their fields. Frank Wilczek shared a physics Nobel Prize for theory undertaken during the 1970s. He and colleagues helped explain matter’s stability: They clarified how close-together quarks (subatomic particles) fail to attract each other, though quarks draw together when far apart. Why stop after cofounding one subfield of physics? Frank spawned another in 2012. He proposed the concept of a time crystal, which is like table salt, except extended across time instead of across space. Experimentalists realized a variation on Frank’s prediction in 2018, and time crystals have exploded across the scientific literature.1

Rudy Marcus is 96 years old. He received a chemistry Nobel Prize, for elucidating how electrons hop between molecules during reactions, in 1992. I took a nonequilibrium-statistical-mechanics course from Rudy four years ago. Ever since, whenever I’ve seen him, he’s asked for the news in quantum information theory. Rudy’s research group operates at Caltech, and you won’t find “Emeritus” in the title on his webpage.

My PhD supervisor, John Preskill, received tenure at Caltech for particle-physics research performed before 1990. You might expect the rest of his career to form an afterthought. But he helped establish quantum computing, starting in the mid-1990s. During the past few years, he co-midwifed the subfield of holographic quantum information theory, which concerns black holes, chaos, and the unification of quantum theory with general relativity. Watching a subfield emerge during my PhD left a mark like a tree on a bicyclist (or would have, if such a mark could uplift instead of injure). John hasn’t helped create subfields only by garnering resources and encouraging youngsters. Several papers by John and collaborators—about topological quantum matter, black holes, quantum error correction, and more—have transformed swaths of physics during the past 15 years. Nor does John stamp his name on many papers: Most publications by members of his group don’t list him as a coauthor.

Laurels 2

Do my colleagues do science after laurels pile up on them? The answer sounds to me, in many cases, more like a roar than like a “yes.” Much science done by senior scientists inspires no less than the science that established them. Beyond their results, their enthusiasm inspires. Never mind receiving a Bell Prize. Here’s to working toward deserving a Bell Prize every six years.

&

With thanks to the Fields Institute, the University of Toronto, Daniel F. V. James, Aephraim Steinberg, and the rest of the conference committee for their invitation and hospitality.

You can find videos of all the conference’s talks here. My talk is shown here

1To scientists, I recommend this Physics Today perspective on time crystals. Few articles have awed and inspired me during the past year as much as this review did. 

Comments